Courses currently offered:

430: Indeterminate Structures

431: Advanced Concrete Design Building

432: Design of Masonry Structures

445: Building Retuning

453: Load and Energy Simulation

454: Advanced HVAC 455: Advanced HVAC Design

456: Solar Energy Building System Design

457: HVAC Controls

458: Advanced Acoustics

459: Measurement Science for High Performance Building Systems

461: Architectural Illumination Systems & Design

464: Advanced Architectural Illumination Systems & Design

466: Computer Aided Lighting & Design

467: Advanced Building Electrical Systems

468: Building Electrical and Communication Systems

470: Residential Building Design & Construction 471: Construction Management of Residential Building Projects

472: Building Construction Planning & Management 473: Building Construction Management Control

475: Building Construction Engineering I

476: Building Construction Engineering II

530: Computer Modeling of Building Structures

531: Legal Aspects of Engineering and Construction

534: Analysis and Design of Steel Connections

535: Historical Structural Design Methods

537: Building Performance Failures and Forensic Techniques 538: Earthquake Resistant Design of Buildings 542: Building Enclosure Science and Design

543: Research Methods in Architectural Engineering

551: Combined Heat and Power System Design for Buildings

552: Air Quality in Buildings

553: Building Energy Analysis

555; Building Automation and Control Systems

556: Solar Engineering of Thermal Processes

557: Centralized Cooling Production and Distribution Systems

558: Centralized Heating Production and Distribution Systems

559: Computational Fluid Dynamics in Building Design

561: Science of Light Sources

562: Luminous Flux Transfer

563: Luminaire Optics

565: Daylighting

570: Production Management in Construction

571: International Construction Management and Planning

572: Project Development and Delivery Planning

579: Sustainable Building Project Leadership

581: Facilities Management Information Systems

Master's in Archit **Engineering Degr**

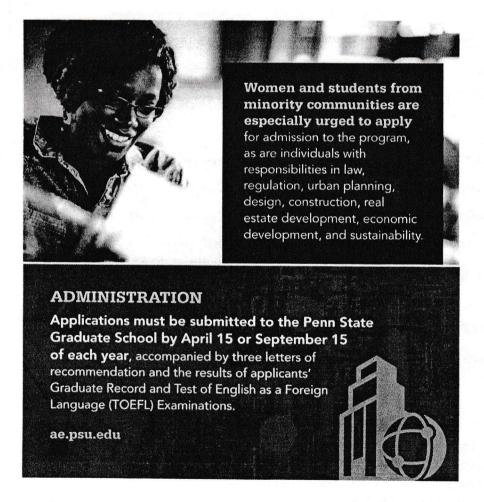
Ultra-High-Performance Building

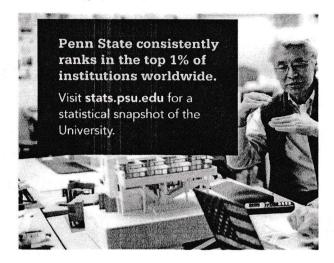
For students recommended and sponso governments to prepare for their future

The Penn State Architectural Engineering ranked globally at the top of its field, is of Engineering (M.Eng.) degree program crafted for buildings professionals, policy regulators worldwide who are selected a by their governments to prepare for lead building transformation in their home co

ARCHITECTURAL **ENGINEERING**

©2019 The Pennsylvania State University. All Rights Reserved. This publication is available in alternative media on request. Penn State is an equal opportunity, affirmative action employer, and is committed to providing employment opportunities to all qualified applicants without regard to race, color, religion, age, sex, sexual prientation, gender identity, national origin, disability or protected veteran status. U.Ed. ENG 19-274




The goal of the program is to bring together the best minds from around the world to work collaboratively in an innovation ecosystem to collectively develop solutions to the most pressing infrastructure engineering problems around the world.

This program will provide the most advanced training, built around a demanding 30-credit core curriculum in ultra-high-performance buildings, and is tailored to prepare each student to develop solutions that address the specific needs of the home country and the responsibilities the student will assume at home upon completion of the degree.

The program is part of Penn State's expanding UN-focused effort to support worldwide transformation of the building sector to ultra-high-performance buildings as envisioned by the United Nations Ultra-High-Performance Building Initiative, administered by the United Nations Economic Commission for Europe.

The 12-month program of study will launch in the fall 2019 semester as an intensive one-year initiative, with students graduating at the end of the summer 2020 semester. Students should have undergraduate training in engineering or other related disciplines that cover thermodynamics, solid mechanics, and/or illumination.

CURRICULUM

All students will gain core knowledge in four key ar curriculum involves four three-credit courses:

- Core Knowledge #1: Building Systems Integrati Thermal, Mechanical, and Energy Sourcing (3 cre
- Core Knowledge #2: Lighting, Daylighting, Env. (3 credits)
- Core Knowledge #3: Occupant Behavior and Bi Responsiveness to Occupants and Environment
- Core Knowledge #4: Sensors, Data Science, Per Assessment, and Smart Building Management (3

In addition, students will, in collaboration with the governments, participate in two "hands on" practic (3 credits each) to serve as a cornerstone and capsic curriculum. The practicum course content will vary students' specific challenges in which the student vupon return to their home country, which will be paprocess. Topics can include technical, legal, regular other dimensions of the building stock transformat. The cornerstone and capstone courses must be ap department prior to matriculation and will be taker third (summer) semesters, respectively.

Four additional three-credit courses, for a requir hours, will be selected from courses offered by the other departments within the University offering into students' objectives, with offerings ranging from development, policy, and law to real estate and othengineering. All selections and overall curriculum capproved by the AE department.

The M.Eng. degree program in architectural eng Penn State combines key core competencies with substantive flexibility. It is designed to create tailor among students, home governments, and Penn Staknowledge and skills required to lead building sect Special provisions can be made for either backgrounot covered by prior education or to offer students highly advanced work in areas of special interest.